
Uniform Solution of Parity Games on Prefix-Recognizable

Graphs
�

Thierry Cachat

Lehrstuhl für Informatik VII, RWTH, D-52056 Aachen

Fax: (49) 241-80-22215, Email: ����� � ���	��
�	������������
���������� ��� �	��� ��� ���� �

Abstract

Walukiewicz gave in 1996 a solution for parity games on pushdown graphs: he

proved the existence of pushdown strategies and determined the winner with an EX-

PTIME procedure. We give a new presentation and a new algorithmic proof of these

results, obtain a uniform solution for parity games (independent of their initial configu-

ration), and extend the results to prefix-recognizable graphs. The winning regions of the

players are proved to be effectively regular, and winning strategies are computed.

1 Introduction

Games are an important model of reactive computation and a versatile tool for the analysis

of logics like the ! -calculus [4, 5]. Namely we know that the model checking problem of

the ! -calculus is polynomialy equivalent to the problem of solving parity games. In recent

years, games over infinite graphs have attracted attention as a framework for the verification

and synthesis of infinite-state systems [6].

In the present paper we consider two-player parity games on pushdown graphs (tran-

sition graphs of pushdown automata) and on prefix-recognizable graphs. It was shown in

[10] that one can determine in EXPTIME the winner of a pushdown game, and that winning

strategies can be realized also by pushdown automata.

The drawback of these results [6, 10] is a dependency of the analysis on a given initial

game position, and a lack of algorithmic description of the (computation of) winning strate-

gies. In this paper we extend the results of [10] to a uniform solution for parity games on
"
a preliminary version of this paper was accepted at the Workshop INFINITY 2002, Brno

1

prefix-recognizable graphs (independent of initial configuration), and we define explicitly

the (computation of a) winning strategy.

In Section 2 we give a new presentation and proof of the results of [10] stressing upon

effectivity. Section 3 presents an exemple of pushdown game. Then in Section 4 we extend

these results to compute uniformly the winning region of the game (the set of configurations

from which Player � can win). It is proved to be effectively regular, and a corresponding win-

ning pushdown strategy is also uniformly defined. In Section 5 we consider parity games on

prefix-recognizable graphs, which are an extension of pushdown graphs, where the degree

of a vertex can be infinite [2]. We show that any prefix-recognizable game can be “simulated”

by a pushdown game, in the sense that under a certain correspondence of game positions,

the winner of one game is the same player as the winner of the other game. An exemple is

also provided. Applying the uniform solution of Section 4, we get a uniform solution and

an effective winning strategy also over prefix-recognizable graphs.

The result of Section 4 has been found independently from us by Olivier Serre in [7].

2 Pushdown Games: Walukiewicz’s Results

Sections 3 and 4 of [10] are not stated in an effective (i.e., algorithmic) framework, and their

results “become” effective only with the help of Section 5 of [10]. We prefer to give first a

new presentation of the construction of Section 5 of [10]. Then the most important results

can be deduced, including all algorithmic claims.

The idea of [10] is to “reduce” the pushdown game to a parity game on a finite graph.

This allows to determine the winner, and also the winning strategy. We assume the posi-

tional (“memoryless”) determinacy of parity games over finite graphs, see [4].

A Finite State Parity game (FSP) is a tuple ���������
	�� where ������������ � is the finite set of

vertices of the game graph, ��������� is the edge relation, and 	��������! #"$�&%'%'%(�
)�*,+.-0/21 is

the priority function ()3*,+�45"). It is assumed in [10] that ���6�����7�8��� ����9:����� ���8�;�<� , but this

is not essential. From now on we use the infix notation � for the edge relation: =�>?��>A@CB3���
��>?��>�@D��B8�FE >G�H>�@ .

Starting in a given initial vertex I�JKBL� , a play in ���������
	�� proceeds as follows: if IAJ.BM�;� ,
Player � picks the first transition (move) to ION , else Player �P� does, and so on from the new ver-

tex IQN . A play is a (possibly infinite) maximal sequence I�J2IRN�%'%'% of successive vertices. For

the winning condition we consider the max-parity version: Player � wins the play IQJ2IRN�%'%'%
iff lim sup SUTWV�	X�YI S � is odd, i.e., iff the maximal priority seen infinitely often in the play is

odd.

2

A Pushdown Game System (PDS) is a tuple �������&���W� , where ����(�&���A� � is the partitioned set

of control locations, � the stack alphabet, and � a (finite) transition relation �����G�	�7�
�O�	���� ,
where � �� ��.9��K9�� . The set of configurations of the PDS is �������� , partitioned into

� ����A�����2��� � �;��A� ����� . The set of transitions, or edge relation, is &������� ��� @ ! � �"!?��� �#� ��� @ � !��OB
�K�#� B$���#1 . We also have a priority function % �&� ��� #"$�&%'%'%��
)�*,+ - /21 , extended to � by

%������ �Q�%����O� . A play starting from an initial configuration I�J , and the winning condition

are defined in the same way as for the FSP, replacing �7� and �;� � by � � and � � � . Player � wins

a play I�J2IRNX%'%'% iff lim sup SUTWV'%��YI S � is odd. In this section we consider a particular initial

configuration IXJ (�7J*) , where) B+� , ��J B,� .

A pushdown strategy for � in its general form is a deterministic pushdown automaton with

input and output. It “reads” the moves of Player �P� (elements of �) and outputs the moves

(choices) of Player � , like a pushdown transducer.

Definition 2.1 Given a game over a PDS ��� ��� ���W� , where �*- is the set of transition rules in � depart-

ing from Player . configurations, a pushdown strategy for Player � in this game is a deterministic

pushdown automaton /� �10 ��2 ��3K� , with a set 0 of control states, some stack alphabet 2 , and a

finite transition relation 3 � ���10 �42 �4� � �������10 �526� ����9����10 �72 �R���10 �426� �4� ����� .

Theorem 2.2 [10] Given a Pushdown Game System 8 with a parity winning condition, one can

construct a Finite State Parity game such that:

1. the winner of the parity game over 8 from the initial configuration � J9) is the winner of the FSP

from a certain initial vertex denoted :<;
=?>?@7���$J �A) �ABO��%����7J?��� , where B�B���C ���R���#D9E�F ,

2. a winning pushdown strategy for Player � in the parity game over 8 from the initial configuration

�7J�) can be constructed from a winning strategy for Player � in the FSP from the initial vertex

mentioned above..

In the sequel we present informally how a play on the PDS is “simulated” in the FSP. We will

see later that a configuration ����� of the PDS, where �5BG� , � BH� , and � BI� � , is represented

in the FSP by a vertex :<;J=?>K@(���O�#� �ABO�
)3� , where) B #"$�&%'%'%7�
)3*,+8- /21 is a priority, and

B B ��C ���R����D9E�F “summarizes” information about � . (the number) is the highest priority

seen in a certain part of the game, and B represents the set of control states L such that

Player � can win the game from LM� , under certain conditions depending on)). To begin

with, consider the initial configuration (�(J�)), where the symbol) B�� cannot be erased

w.r.t. the rules of � . The corresponding vertex of the FSP is :<;J=?>K@(���GJ �A) �ABO�
)3� , where in this

particular case B and) are not relevant.

3

From a configuration ����� , simulated by :<;J=?>K@(���O�#� �ABO�
)3� , the player whose turn is it is

determined by � , in the PDS as well as in the FSP: either �3B,� � or �3B,�7� � . Let .�B � �&�Y� 1 such

that ��BG��- . Different types of moves are possible in the PDS.

If Player . chooses a transition ��� �#� ��� @ �#� @ � , i.e., if the stack length remains constant, then

the FSP proceeds to the vertex :<;J=?>K@(��� @ �#� @ �ABO� max �)5��%���� @ ����� . This means that B remains

the same,) is updated for later use and represents the maximal priority seen since last

initialization of) (see below). The priority of this vertex is %����G@�� in the FSP, as well as the

corresponding configuration in the PDS, and the play goes on like that until some “push” or

“pop” operation occurs.

The key point is the treatment of the push operation, because one cannot store in the FSP

the whole information contained in the stack. If Player . chooses a transition ��� �#� ��� @ �#� @ � ��B
� , i.e., “pushes” one more symbol onto the stack, then in the FSP the corresponding new

vertex is ���Q> ;O��BO�
)5���G@ �#� @ � � . This is an intermediate vertex were Player � (always) has to

make a decision. He has to guess what can happen later, and what he can guarantee. Player �
chooses a tuple : B ��C ���Q����D6E F such that he claims/guesses that whenever the symbol � @
currently at the top of the stack is “popped”, then after this pop operation, the PDS will be

in a control-state LMB':�� such that � is the highest priority seen between the “push” and the

“pop” of this � @ . This part of the game is a “subgame” in [10], and this notion is not so far

from the idea of “detour” in [8]. More precisely, �W@ can be replaced later by another letter, but

the condition on : must hold when the length of the stack decreases and symbol � comes at

the top of the stack.

So Player � goes to the vertex :�� *��<) ��BO�
)3���K@D�#�G@ � � : � , which is a vertex of Player �P� . In

particular, if :� �
	 �&%'%'%7��	 � , then Player � is claiming that the stack will never become again

shorter. And Player � can claim that the highest priority that can be seen in the subgame is �
by choosing : as ��: N �&%'%'%7� :��&��	 �&%'%'%(��	 � . Player �P� has to answer the claim of Player � : either

he thinks that Player � is bluffing, and he challenges the claim, or he believes that Player �
can achieve his claim, and he wants to see what happens after the subgame.

The second case is simple: Player � � goes to vertex ���) � ��L�� � �ABO�
)5���'� such that L�B�:�� .
This is an intermediate vertex which, as a shortcut, simulates one of the above mentioned

subgames: among the propositions of Player � , Player � � chooses that the highest priority

seen in this subgame was � , and when � appears again at the top of the stack, the new

control state is L . The priority of this ��()7� �
� vertex is � in the FSP. Then the play goes on to

:<;
=?>?@7��L�� � �ABO� max ��� �
)5��%���L������ without any alternative.

In the first case, when Player �P� challenges the claim, he goes to vertex

:<;
=?>?@7��� @��#� @D� : ��%���� @���� . This means that the last component is reset to %����.@�� , and will re-

4

member the maximal priority seen in the subgame we just entered. The tuple : is stored,

and whenever a “pop” operation occurs later, it is possible to check if the claim of Player � is

achieved. If it is, this means immediate win for Player � . If it is not, this means immediate

win for Player � � (see the proof for details, and above for the update of)). But the play can

also stay forever in the Check() vertices, i.e., without “pop”. In this case the winner is deter-

mined by the parity condition. In fact the claim of Player � after a push operation means also

that if no pop occurs later, then he has to win the subgame just with the parity condition.

We restrict ourselves in this paper to the following form of pushdown strategy. We consider

a strategy automaton �10 ��2 ��3.� where 0 �� �R� � �A� � , 2� � ��� , � is any alphabet, and

3 � �����A� ���92 ��� � �
� � ��� ��2 � ���U9 �����A� ��2 � � ��� �92 � ��� �<��� . Moreover we have the condition

that whenever the game is in a configuration ��� J�%'%'%���� , the strategy automaton should be

in a configuration � � ��J � . J � %'%'% � ���Q� .��(� , which means that the strategy has more information

in its stack, represented by .�J�%'%'%K.�� , but follows the play. If � B ��� , then � � �RJ�� . J?� deter-

mines the move of Player � w.r.t. 3 , and the strategy updates its stack. If � B � � � , then for

any move of Player �P� , i.e., for any transition in � � � , the strategy should update its stack. At

the beginning of the play, the strategy has to be initialized properly, according to the initial

configuration of the game. Then for each move of the play, the strategy executes a transition.

In our particular form of strategy, there is a redundancy in the transition relation: sup-

pose � � �QJ � . J?� is the top of the stack, if � B ��� , then a unique transition is possible in

the strategy, and the output of the move ��� B � � can be deduced from the update of the

stack. If � B��7� � , then a unique transition can follow the choice of Player �P� and update

the stack accordingly, so the input of � � ��B � � � is redundant. From now on we consider

3 � ���:�42 ���������42 �� � .
Formally, if � B �X� , then =(* B 2��	� ��� �2*����G@ ��
M�MB 3 . Moreover if ��� �2*���� @D��
��MB 3 and

* � � � .�� ,
� � � N � .�N � %'%'% � � S � . S � (�� @� "), then ��� �#� ��� @ �#� N�%'%'%1� S �QB7� , that is to say the

hint of the strategy is valid. If � BH��� � , then =���� �#� ��� @ �#� N�%'%'% � S � BI���	� ��� �2*���� @ ��
M� B+3 such

that * � � � .�� and
� � � NU� .�NU� %'%'% � � S � . S � (�� @� ").

Proof of Theorem 2.2

Definition of the FSP

The PDS is given by 8�6������� ���W� , ����(�,�7�A� � , and % .

For every �O��� @�� L�B,� ; � �#� @ � � B+� ;)5��� B #"$�&%'%'%��
)�*,+ -3/21 ; BO� :5B���C ���Q����D6E F , the FSP has the

following vertices:

:<;J=?>?@7��� �#� �ABO�
)�� � ���Q> ;O��BO�
)5��� @ �#�G@ � � �
:�� *��
) ��BO�
)5��� @ �#� @ � � : � � ��()7� ���O�#� �ABO�
)5���'� ��� ��� � ���O� ��� ��� � � ���O� �

5

and the following transitions:

:<;
=?>?@7��� �#� �ABO�
)3�7� :<;J=?>?@7��� @��#�G@D�ABO� max �)5��%���� @������ if ��� �#� ��� @��#� @ �RB4�K�
:<;
=?>?@7��� �#� �ABO�
)3�7� � ��� � ��� @ � if ��� �#� ��� @ � �$�RB4� and � @ BGB D �
:<;
=?>?@7��� �#� �ABO�
)3�7� � ��� � �D��� @ � if ��� �#� ��� @ � �$�RB4� and � @ �BGB D �
:<;
=?>?@7��� �#� �ABO�
)3�7� ���Q> ; ��BO�
)3��� @ �#� @ � � if ��� �#� ��� @ �#� @ � �RB4�K�
���Q> ;O��BO�
)5��� @ �#� @ � �A� :�� *��<)5��BO�
)5��� @D�#� @ � � : � �
:�� *��
) ��BO�
)3��� @D�#�G@ � � : �A� :<;
=?>?@7��� @ �#� @ � : ��%���� @ ��� �
:�� *��
) ��BO�
)3��� @D�#�G@ � � : �A� ���) � ��L�� � �ABO�
)5���'� if L�BH:�� � and

���)7� ��L�� � �ABO�
)3���'�(� :<;
=?>?@7��L�� � �ABO� max ��� �
)5��%���L��������
One defines in the FSP the player whose turn it is: :<;
=?>?@7��� �#� �ABO�
)3�RB8�R� E �3B,�A� , but

���Q> ;O��BO�
)5��� @ �#� @ � � B ��� and :�� *��
) ��BO�
)3��� @ �#� @ � � : � B �;� � . From other vertices, the players

have no alternative: there is a unique successor.

One has the following priorities:

	X��:<;
=?>?@7��� �#� �ABO�
)3���7�%����O� , 	X�����) � ��L��#� �ABO�
)5���'���R � , and

	X�����R> ;O��BO�
)5��� @ �#� @ � ��� 	X��:�� *��<) ��BO�
)3��� @#�#�G@ � � : ��� " because the latter are intermediate

vertices which should not interfere with the parity condition.

It remains to clarify the situation concerning deadlocks. If the first letter of the stack and

the control state do not permit to execute a transition, there is a deadlock in the PDS as in the

corresponding vertex of the FSP. We leave to the reader to choose the convention concerning

which player wins in that case.

If one needs a bottom stack symbol ()), that cannot be erased and cannot be pushed, one

has to care for this explicitly in � and � . Otherwise when the stack is empty, no transition

is possible in our framework of PDS. We have again to choose a convention for this type of

deadlock. It concerns the choice of B in the initial vertex :<;
=?>?@7���QJ?�A) �ABO��%����7J?��� of the FSP.

Equivalence between the games: from FSP to PDS

Suppose that Player � has a winning strategy in the FSP from vertex

:<;
=?>?@7���7J �A) �ABO��%����7J?��� . Since the game graph is finite, and the strategy can be taken posi-

tional [4], it is effectively given as a subset of the set of transitions, and denoted ������ � � .

We will define from it a winning pushdown strategy in the PDS. This construction will be

effective.

The strategy automaton is ��� ��2 ��3.� , with 2 � � � . We fix � ��C ���Q����D6E F5�
 #"$�&%'%'%7�
)3*,+ - /21 . For notational convenience, an element � � � ��BO�
)3��� of 2 will be written

� BA) , and a transition ����� �#� BA)�� � ��� @ �#� @ B @) @ ���CB,3 will be written as a prefix rewriting rule

� � BA) �����	 � � @1� @ B @) @ . Similarly � � BA) �����	 � � @?� , and � � BA) �����	 � � @1� @ B @P) @ �G@ @ B @ @P) @ @ .

6

The initial configuration of the PDS is �7J�) , and the one of the FSP is :<;
=?>?@7���CJ �A)
�ABO��%����7J?��� , where B is chosen according to the convention about empty stack (see above).

The initial configuration of the strategy is �RJ)�B�%����AJ � . From a configuration � � BA)
 of

the strategy automaton, where
 B42 � , the transition in 3 is defined as follows:

If � B �A� , then we know that in the FSP Player � chooses the next vertex from

:<;
=?>?@7��� �#� �ABO�
)3� according to ������ .

- If :<;
=?>?@7��� �#� �ABO�
)3� ������ :<;
=?>?@7��� @��#� @D�ABO� max �)5��%���� @������ , then use the transition

� � BA) �����	 � � @1� @ B max �)3��%���� @ ��� .
- If :<;J=?>K@(���O�#� �ABO�
)3� ������ � ��� � ��� @ � , then apply � � BA) �����	 � � @ � . Of course in the PDS there

is no immediate win, but the game goes on (cf jump move). Moreover it is necessary, in the

new top letter � @ B @) @ of the stack to update) @ according to) and %���� @ � , as follows (details

are left to the reader): � � BA)$� @ B @) @ �����	 � ��� @ �
)3� � @ B @) @ �����	 � � @ � @ B @ max �)5�
) @ ��%���� @ ��� .
- If :<;J=?>K@(���O�#� �ABO�
)3� ������ ���Q> ;O��BO�
)5��� @��#�G@ � � ������ :�� *��<) ��BO�
)3��� @ �#� @ � � : � , then apply

� � BA) �����	 � � @1� @�:<%���� @�� � BA) . Of course in the PDS Player �P� has no opportunity to jump,

he must enter the subgame.

If � B �A� � , then Player �P� chooses any possible transition in the PDS, and the

Strategy automaton updates its stack according to the winning strategy ������ of the

FSP. More precisely, if Player �P� chooses ���O�#� ��� @ �#� @ � B � , then the strategy exe-

cutes � � BA) �����	 � � @1� @ B max �)3��%���� @ ��� . If � � chooses ��� �#� ��� @�� �$� B � , then the

strategy choses � � BA) �����	 � � @?� , followed by an update of) @ . If � � chooses

��� �#� ��� @D�#� @ � �HB � , then we have to follow ������ in the FSP, and find : such that

���Q> ;O��BO�
)5��� @ �#� @ � � ������ :�� *��<)5��BO�
)5��� @D�#� @ � � : � . Then � � BA) �����	 � � @1� @�:<%���� @ � � BA) is ap-

plied.

Because ������ is winning in the FSP, �����	 � is also winning in the PDS. Moreover using

known algorithms to solve the FSP, we have constructed a pushdown strategy which is win-

ning.

from PDS to FSP

Given a winning strategy in the PDS, we will define a winning strategy in the FSP. Here

a strategy in the PDS from initial configuration ��J�)W0I�J is a function � ��� which associates

to the prefix I7JR%'%'% I � of a play a “next move”, i.e., a transition in � . We consider a strategy

for Player � , so it is defined if I � BI� � . This function is not necessarily computable, so this

part is not effective.

As above, a vertex :<;J=?>?@7��� �#� �ABO�
)�� corresponds to a configuration ����� of the PDS. If

� B �A� � , the PDS has to follow the move of the FSP in the usual way, whereas if � B � � ,
the strategy � ��� determines the “good” move of the FSP. The only difficult point is the push

7

operation: from ���R> ; ��BO�
)3���G@��#�G@ � � Player � has to guess a tuple :FB ��C ���R���1D9E�F of sets of

possible control states after the next pop. This is well defined if function � ��� is well defined,

although this is a second reason why this part is not effective (even if � ��� is effective). �

Corollary 2.3 If there is a winning strategy for Player � in the parity game over the PDS, then there

is effectively a winning pushdown strategy.

The results in [6, 8] are in some sense stronger. One can deduce from them the winner, and

a winning strategy defined by a finite automaton with output. It reads the current configu-

ration and outputs the “next move”. This strategy is positional and can also be executed by

a pushdown automaton.

Note that in the above construction, the FSP has the same number)�*,+ of priorities than

the PDS, and the number of vertices is exponential in ! �
! (more precisely, in ����! �9! = D9E�F�� ��� �).
So far the best known algorithms to solve finite state parity game are polynomial in the

number of vertices and exponential in the number of priorities. Applied here, we get a

solution for parity games over pushdown systems ������� ���W� which is exponential in)3*,+&! �J! .

3 Example

We present here a simple example of pushdown game to illustrate the previous section. Let

�.5 *��A) 1 �
�A�;5 � N�1 �
�A� ��5 �7J ��� 1 �
� 5 &���7J �A) ���7J �2*�) � � ���7J��2*����7J��2*�*�� � ���7J��2*���� N �2*�� � ��� N �2*���� NU� �$� �

��� NU�A) ���7J �A) � � ��� N �A) ��� �A) � � ��� �A) ��� �A) � � ��� �2*���� � �$��1 �
%����7J �A /?�<%���� N'�A�%���� �A "$�()3*,+ � �

The game graph looks like the following:

�7JK)��$/ �CN�)��?" �)��?"

�AJ?*�)��$/ � N'*�)��?" � *�)��?"

�7J?*�*�)��$/ �CN *�*�)��?" � *�*�)	�?"

%'%'% %'%'% %'%'%
We consider the initial configuration � N�) . We represent below the part of the corresponding

FSP that is relevant for Player � . Namely the solid-arrows define a winning strategy for

8

Player � , other arrows are dashed. We will write BCJ?BCN for a tuple ��B7J �ABCN � in ��C ���Q��� . The

symbol) cannot be removed from the stack, so the initial value of the tuple B B ��C ���Q���1 is

not relevant. We set it to 	 	 in the initial vertex :<;J=?>K@(��� N'�A) ��	 	 �<" � .

:<;J=?>K@(���CNU�A) ��	 	 �<" � :<;
=?>?@7��� �A) ��	 	 �<" �

:<;
=?>?@7���7J �A) ��	 	 �2/ � :<;J=?>K@(���CNU�A) ��	 	 �2/ � :<;
=?>?@7��� �A) ��	 	 �2/ �

���Q> ; �
	 	 �2/?���AJ �2*�) � ���) � ��� NU�A) ��	 	 �2/?�2/ �

:�� *��<)5�
	 	 �2/?���7J �2*�) ��	U �CN 1<�

:<;
=?>?@7���7J?�2*���	U � N 1��2/ � :<;
=?>?@7��� NU�2*���	U � N 1 �2/ � � ��� ��� N �

���Q> ; �
	U � N
1 �2/?���AJ,�2*�*�� ��()7� ��� NU�2*���	U � N 1 �2/?�2/ �

:�� *��<)5�
	U � N 1 �2/?���7J��2*�*���	U �CN 1��

We see that Player � has a winning strategy from :<;J=?>?@7���GNU�A) ��	 	 �<" � , by choosing always

�
	 �# � N 1�� after a ���R> ; node, and, of course, going from �GN) to �(JK) .

4 Extension to a Uniform Solution

The deficit of the result of [10] is that the winner is determined only from the initial position

�7J) . We give here an algorithm which determines the winner from any position. One need

a pre-computation to solve the FSP below, e.g. with the algorithm of [9]. Moreover we get

a global or “symbolic” representation of the whole winning region, which will be proved to

be regular (configurations are words over the alphabet � 9G�).

We have seen that a configuration ����� of the PDS is represented in the FSP by

:<;
=?>?@7��� �#� �ABO�
)3� where B “summarizes” information about � . This can be used more sys-

tematically if we know from which configurations LM� Player � can win. For all B � � , we

write � B�� D9E�FW ��BO�&%'%'%A�AB �RB���C ���R����D9E�F .

Algorithm 4.1 (uniform solution for parity game on PDS)

Input: a PDS ��� ��� ���W� , � ��(�;�H�A� � , and a priority function % ���6� � #"$�&%'%'%(�
)�*,+ -6/21 , a

configuration I�JG�����J � N�%'%'% ����B,��� �

9

Output: a winning strategy from I;J , or the answer “ I;J is not in the winning region”

Solve first the FSP corresponding to the PDS (see proof of Theorem 2.2). Determine the winning

region � � : the set of vertices from which Player � has a winning strategy in the FSP, and compute

a positional (and uniform) winning strategy on � � .
� ��� NQ� 	
for �R� � downto 0 do
��� � 5 L�B,�G!K:<;J=?>K@(��L��#� � � � ��� � N � D9E�F ��%���L����QB � �P1

end for

if � �B � J then

answer “ I�J is not in the winning region”

else

answer “there is a winning pushdown strategy with initial configuration

�5��J � � N � D9E�F?%����O��� N � � � D6E F " %'%'%<��� � � ��� N � D9E�F " , and transitions like in the proof of Theo-

rem 2.2.”

end if

In the initialization of
� ��� N , 	 should be replaced by some

� ��� N ��� if there is another con-

vention about empty stack. More formally, this iterative computation can be transformed

into an alternating automaton reading the word ��� J � N�%'%'%1��� , where the transitions are de-

fined depending on which configurations are winning in the FSP. This proves that the win-

ning region of the PDS is regular.

Theorem 4.2 Given a PDS with a parity winning condition, one can compute uniformly the win-

ning region of Player � , which is regular, and a winning pushdown strategy with Algorithm 4.1.

For the proof we observe that the winning condition concerns only the priorities seen in-

finitely often, and the result of a play does not depend on a finite prefix of it. The initializa-

tion of the strategy, as well as determining the winner, is in linear time in the length of the

configuration, and the computation of the “next step” is in constant time.

It remains open how to extend the techniques of [6, 8] also to a uniform solution.

Example

We consider the same example as in section 3. If we solve completely the FSP, we see that

10

the following nodes are in the winning region of Player � :

:<;
=?>?@7���7J �A) �ABAJ?BCN �2/ � for all ��BXJ �ABCN ��B���C ���R��� �
:<;
=?>?@7��� NU�A) �ABAJ?BCN �<" � for all ��BXJ �ABCN ��B���C ���R��� �
:<;
=?>?@7���7J �2*��ABAJ BCN �2/ � if �CN BGBCN �
:<;
=?>?@7��� NU�2*��ABAJ BCN �<" � if �CN BGBAJ?�
:<;
=?>?@7��� �2*��ABAJ BCN �<" � if � BGBAJ �

Applaying the algorithm to a configuration I7JL � * %'%'% *�) , we get
� ��� N � 	 and for all

� B #"$���Q1 ��� 5 �7J?���CN�1 . Then the winning region of Player � in the PDS is �CJ ��� N�1�* �) .

5 Parity Games on Prefix-Recognizable Graphs

Among several equivalent definitions of Prefix-Recognizable Graph (class ���<:������ in [2]) we

choose the following. Given a finite alphabet � , a graph, or set of edges � � � � � � � is a PRG

iff

�
�	
 	 �	�
 !�� B�
 � ����B5� � ��
 B � � �2/� ���� 1��

where for all � , /� ���� , the
 � ��� � ��� �
are regular sets over � .

Games over PRG are defined in a natural way. In a configuration +:B � � , the first letter

determines the priority and the player whose turn it is. For technical reasons the priority

function is % �J�3� � ���&%'%'%(�
)�*,+ -6/21 , extended to � � by %��
*,+�� %��
*�� �#=7*0B �2� +�B ��� .
And we have � � � �H� � � , � �X � � � � , and � � �A � � � � � , similarly to the PDS. A game starting

from I�J.BI� � is defined in the usual way. Again we consider max-parity: � wins IRJ2IRN�%'%'% iff

lim sup SUTWV'%��YI S � is odd.

Reduction to Parity Game on Pushdown Graph

We will define a PDS ��� ����@����W� which is equivalent to the PRG in the sense that Player �
wins the PDS iff he wins the PRG, and a winning strategy in one game can be effectively

constructed from a winning strategy in the other game.

Let ��@ �� � �) 1 . A vertex *,+�B � � of the PRG (*�BI�) is represented by the configuration
� �S *,+�) or � � �S *,+�) , if @ %��
*�� and * is in � � or � � � respectively (� �S � � � �S B �). The idea of

the reduction is to decompose the transition �
 	 � �
 of the PRG letter by letter, using

intermediate configurations in the PDS.

Theorem 5.1 Given a PRG with parity condition, one can construct in linear time a PDS which is

equivalent to the PRG in the following sense: a play over the PRG is mapped to a play over the PDS

11

preserving the winning condition. Consequently:

1. the winner of the parity-PRG from a given configuration is the winner of the parity-PDS from the

corresponding configuration,

2. a winning strategy in the parity-PRG can be calculated from a winning strategy in the parity-PDS.

Proof: Each regular set is recognized by a (say deterministic, complete) finite automaton:� �
for
 � , � � for ˜� � , � � for � �

. Here ˜� � is the mirror language of � � , i.e., � � is reading

from right to left. We note � ��� the states of
� �

, L ��� and � ��� those of � � and � � respectively.

The corresponding initial states are � � J , L � J , and � � J . We note � ��� E��� � ����� a transition in
� �

labeled by the letter * . In the following � is always an integer in the finite range � "$� � � � where

� � is the maximal number of states of the automata
� �

, � � , and � � .
We define now the PDS that simulates the PRG. The control-states of the PDS have the

same names as the states of the automata
� �

, � � , and � � , with additional superscript � or �P�
(� is ranging over � /?� � �):

�A� � ���� ! " 	���� � 1�9 � �S ! � @�
)�*,+ 1�9 > �� 1
�A� � � � ���� ! " 	���� � 1�9 � � �S ! � @�
)3*,+ 1�9 > � �� 1 �

Additional control states � �S and � � �S are used to mark the configurations of the PDS that cor-

respond to vertices of the PRG. States > �� ��> � �� are added for technical reasons.

The transitions rules of the PDS are the following: for all *����B+�'� > B � @ ,
� �S > 	 � � �� J > (Player � chooses to use in the PRG a transition of type � :

� �
 � 	 �	� �
 � � � B�
 � ��� � B5� � ��
 � B � �
),

� � �S > 	 � � � �� J > (similarly for Player � �).

Then for all .�B � �&� �#1 ,
� -��� * 	 � � -����� if � ��� E�;���� � ����� (“reading” of � �),
� -��� > 	 �!> ¯-� > if � ��� is a final state of

� �
(Player . decides that the word � �

ends here, and asks the opponent for agreement).

The opponent of . is denoted ¯. .

> ¯-� > 	 � � -� J > (the opponent wants to verify that the rest of the stack

is really in � �
, because he thinks that this is not the case)

� -��� * 	 � � -����� if � ��� E���� � � ����� (“reading” of
 � , then:)
� -���) is immediate lost for . if � -��� is not final in � � ,
and immediate win for . if � -��� is final in � � ,

> ¯-� > 	 � L -� J > (otherwise, the opponent is trusting Player . , and lets him continue),

L -��� > 	 � L -����� �> if L ��������� � L ����� (“writing” of � � , chosen by Player .),

12

L -��� * 	 � � �S * if L ��� is a final state of � � , *�B+�?� and @ �%��
*��
(Player . chooses that � � ends here),

L -��� * 	 � � � �S * if L ��� is a final state of � � , *�B+� � � and @ %��
*�� (similarly).

Note that the control state � �S is redundant with the first letter.

Of course the priority of � -S is %�� � -S �A�@ . Given +�B+� � , it is clear that: + 	 ��� in the PRG

(�5B � �) iff from the corresponding configuration � -S +�) , Player . can reach the configuration
� - �S �
) corresponding to � or wins immediately (if the opponent ¯. thinks that . wants to

violate the transition rule).

Now the unique deficit of this construction is that Player . can stay forever in the states

L -��� , pushing infinitely many new letters onto the stack. To avoid this unfair behavior, which

does not correspond to a real transition of the PRG, we define the following priorities:

%���� ���� � %���L ���� � %�� � ���� � %���> �� � " , %���� � ���� � %���L � ���� � %�� � � ���� � %���> � �� � / . These

priorities are lower than the normal priorities, so they have no influence on the winning

condition of the “real” game. One takes " for Player � , while Player � wants an odd number;

so he can’t win by staying in those intermediate states. Similarly for Player � � . �
The reduction presented here is not so far from the result of [3] (Proposition 4.2 of the

full version), that the prefix recognizable graphs are obtained from the pushdown graphs by

� -closure. It should be possible to extend the symbolic solution of [1] for reachability and

Büchi games on pushdown graphs to prefix-recognizable graphs (with the new feature of

optimal strategy).

Example

Let � 3 *����1 , we consider the following PRG:

� �
* 	 � �$��* � 9 �
* 	 � (� � 9 �� 	 � * � � � �

writen here in the form �
 N 	 � � N�� � N 9 �

	 � � � � 9 �
�� 	 � ���'� ��� , with � �� . Let

)3*,+ 	� , %��
*��X � , %�����X
� , �?�$3 * 1 , � � � 5 ��1 . The game graph is pictured here:

 ��� * � �

... *�* � �

��* � �

%'%'%

13

According to the above construction, a vertex *
�

is represented in the PDS by � �
 *
�
) , and is

represented by � � ��) . The automaton recognizing
 � ��� � and � �
are very simple, we do not

define them explicitely. We draw a part of the graph of the corresponding PDS:

� � ��UN) � � �� J) � � ��) L � N) L � J) > � �)

> ��) L � �� J) L � �� N *�) � �
 *�) � � J *�) � � N)

L � N N *�) > � �N *�)

L � ��UN *�*�) � �
 ��) � � NDJ *�*�) � � N N *�)

L � N N *�*�) > � �N *�*�)

L � �� N *�*�*�) � �
 ��*�) � � NDJ *�*�*�) � � N N *�*�)

%'%'% %'%'%
Player � has a winning strategy from in the PRG.

Discussion

It remains open how to apply the MSO-definability of a winning region (either for deciding

the winner or for extracting a winning strategy). Another question is to develop a theory of

game simulation which covers the examples of Sections 2 and 5.

Acknowledgment

Great thanks the referees of ICALP [1] for suggesting the idea of Section 4, to Igor

Walukiewicz for helping me understand his paper, and to Wolfgang Thomas, Christof

Löding and the referees of INFINITY for helpful remarks.

14

References

[1] T. CACHAT, Symbolic Strategy Synthesis for Games on Pushdown Graphs, ICALP’02, LNCS

2380, pp. 704-715, 2002. available at
���������	����
�
�
��������������������������� �!��
����"��#��$���%&�'�)(�%���*#$���$��"����� .

[2] D. CAUCAL, On infinite transition graphs having a decidable monadic theory, ICALP’96,

LNCS 1099, pp. 194–205, 1996.

[3] D. CAUCAL, On the transition graphs of Turing machines, 3rd MCU, LNCS 2055, pp. 177-

189, 2001. Full version to appear in TCS, available at
���������	����
�
�
 ���&�"��+����)�#���,�����,-�%���$��,.�$#�#/��&0���0"/������1���,�2/

.

[4] E. A. EMERSON and C. S. JUTLA, Tree automata, mu-calculus and determinacy, FoCS’91,

IEEE Computer Society Press, pp. 368–377, 1991.

[5] E. A. EMERSON, C. S. JUTLA, and A. P. SISTLA, On model-checking for fragments of ! -

calculus, CAV’93, LNCS 697, pp. 385–396, 1993.

[6] O. KUPFERMAN and M. Y. VARDI, An Automata-Theoretic Approach to Reasoning about

Infinite-State Systems, CAV’00, LNCS 1855, pp. 36–52, 2000.

[7] O. SERRE, Note on Winning Positions on Pushdown Games with Omega-Regular Conditions,

submited to Information Processing Letter, 2002.

[8] M. Y. VARDI, Reasoning about the past with two-way automata, ICALP’98, LNCS 1443,

pp. 628–641, 1998.

[9] J. VÖGE AND M. JURDZIŃSKI, A discrete strategy improvement algorithm for solving parity

games, CAV’00, LNCS 1855 pp. 202–215, 2000.

[10] I. WALUKIEWICZ, Pushdown processes: games and model checking, CAV’96, LNCS 1102,

pp. 62–74, 1996. Full version in Information and Computation 157, 2000.

15

